My goal is to get the pandas equivalent of the below R code:
df1$String_1_check = ifelse(df1$String_1 == df2[match(df1$String_2, df2$String_2), 1], TRUE, FALSE)
If the value in the nth row of column String_1 of df1 equals the first column of df2 where the nth row of column String_2 of df1 matches String_2 of df2, then True in a new column String_1_check, else False in String_1_check.
df1 has many instances of the same values in String_1 and String_2, and df2 only has one instance of each possible value in String_1. With these sample dataframe:
df1 = pd.DataFrame({'String_1': ['string 1', 'string 1', 'string 2', 'string 3', 'string 1'], 'String_2': ['string a', 'string a', 'string b', 'string a', 'string c']})
df2 = pd.DataFrame({'String_3': ['string 1', 'string 2', 'string 3'], 'String_2': ['string a', 'string b', 'string c']})
String_1 String_2
0 string 1 string a
1 string 1 string a
2 string 2 string b
3 string 3 string a
4 string 1 string c
String_3 String_2
0 string 1 string a
1 string 2 string b
2 string 3 string c
The desired output would be:
String_1 String_2 String_1_check
0 string 1 string a True
1 string 1 string a True
2 string 2 string b True
3 string 3 string a False
4 string 1 string c False
I have tried np.where, isin, pd.match (deprecated now), but haven't found a solution.
Aucun commentaire:
Enregistrer un commentaire