I'm trying to implement this formula from a paper (ref):
I tried:
import statsmodels.api
n = 1 # samples
x = 1 # positive results
# Range of significance
Min=0
Max=1
Step=.01
Alpha = np.arange(Min,Max+Step,Step)
Low = []
High = []
for A in Alpha:
low, high = statsmodels.stats.proportion.proportion_confint(x, n, alpha=A, method='jeffreys')
if x == 0: low == 0 # these lines
if x == n: high == 1 # aren't working
Low.append(low)
High.append(high)
But that gives me this:
My if statements are supposed to override the values of low and high when x=0 or x=n. How can I get them to work please?
ref: Brown, L.D., Cai, T.T. and DasGupta, A., 2001. Interval estimation for a binomial proportion. Statistical science, pp.101-117.
Aucun commentaire:
Enregistrer un commentaire