I have a dataframe that has multiple columns named as "avg_metric", "wkday_avg_metric", "event_avg_metric" and "monthly_avg_metric", in which "metric" consists of multiple metrics with these calculations (orders, revenue, etc). I have to check for multiple columns if their rows have NAs and replace them with a row from another column. For that, I created a function that does the same verification for the column "metric" I specify. The thing is that I'm getting the same value for the entire new column that I'm creating, which should not be the case.
I added below an example_fixed on what should be the outcome.
Is there an easier way of doing that? Or am I lacking some logic in the function?
Tks.
library(tidyverse)
(example <- tibble(avg_visits = c(5028, NA, NA, NA),
wkday_avg_visits = c(1234, 4355, NA, NA),
event_avg_visits = c(51271, 59212, 98773, NA),
monthly_avg_visits = c(5028, 5263, 6950, 8902)))
#> # A tibble: 4 x 4
#> avg_visits wkday_avg_visits event_avg_visits monthly_avg_visits
#> <dbl> <dbl> <dbl> <dbl>
#> 1 5028 1234 51271 5028
#> 2 NA 4355 59212 5263
#> 3 NA NA 98773 6950
#> 4 NA NA NA 8902
subs_metric <- function(data, metric) {
avg <- paste0("avg_", metric)
wkday_avg <- paste0("wkday_avg_", metric)
event_avg <- paste0("event_avg_", metric)
monthly_avg <- paste0("monthly_avg_", metric)
for (i in nrow(data)) {
value <- if (is.na(data[[avg]][i]) & is.na(data[[wkday_avg]][i]) & is.na(data[[event_avg]][i])) {
data[[monthly_avg]][i]
} else if (is.na(data[[avg]][i]) & is.na(data[[wkday_avg]][i])) {
data[[event_avg]][i]
} else if (is.na(data[[avg]][i])) {
data[[wkday_avg]][i]
} else {
data[[avg]][i]
}
return(value)
}
}
example %>%
mutate(avg_visits_new = subs_metric(., "visits"))
#> # A tibble: 4 x 5
#> avg_visits wkday_avg_visits event_avg_visits monthly_avg_visits avg_visits_new
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5028 1234 51271 5028 8902
#> 2 NA 4355 59212 5263 8902
#> 3 NA NA 98773 6950 8902
#> 4 NA NA NA 8902 8902
(example_fixed <- tibble(avg_visits = c(5028, NA, NA, NA),
wkday_avg_visits = c(1234, 4355, NA, NA),
event_avg_visits = c(51271, 59212, 98773, NA),
monthly_avg_visits = c(5028, 5263, 6950, 8902),
avg_visits_new = c(5028, 4355, 98773, 8902)))
#> # A tibble: 4 x 5
#> avg_visits wkday_avg_visits event_avg_visits monthly_avg_visits avg_visits_new
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5028 1234 51271 5028 5028
#> 2 NA 4355 59212 5263 4355
#> 3 NA NA 98773 6950 98773
#> 4 NA NA NA 8902 8902
Created on 2020-07-07 by the reprex package (v0.3.0)
Aucun commentaire:
Enregistrer un commentaire