Say I have a data set like this,
df <- structure(list(yr_month = structure(1:7, .Label = c("2016-1", "2016-2",
"2016-3", "2016-4", "2016-5", "2016-6", "2016-7"), class = "factor"),
a = c(4.14, 2.83, 3.71, 4.15, 4.63, 4.91, 5.31), b = c(4.25,
3.5, 3.5, 3.5, 3.5, 3.5, 5)), .Names = c("yrQ", "a", "b"
), row.names = c(NA, 7L), class = "data.frame")
df
# yrQ a b
# 1 2016-1 4.14 4.25
# 2 2016-2 2.83 3.50
# 3 2016-3 3.71 3.50
# 4 2016-4 4.15 3.50
# 5 2016-5 4.63 3.50
# 6 2016-6 4.91 3.50
# 7 2016-7 5.31 5.00
Now, I can use ifelse() to categorize a numeric variable. Like this,
df$a.cat <- ifelse(df$a < 3.8, c("tiny"), ifelse(df$a < 4.8, c("medium"), c("huge")) )
df
# yrQ a b a.cat
# 1 2016-1 4.14 4.25 medium
# 2 2016-2 2.83 3.50 tiny
# 3 2016-3 3.71 3.50 tiny
# 4 2016-4 4.15 3.50 medium
# 5 2016-5 4.63 3.50 medium
# 6 2016-6 4.91 3.50 huge
# 7 2016-7 5.31 5.00 huge
but, what if I want to crate a variable signifying some time periods. Say before Mar 2016, 2016-3, between 2016-3 and 2016-5, and after 2016-5. I realize I can transform the data to ts and then use window() to cut it up and then put it back together, but isn't there a smarter way to get to something like this using if else on yrQ?
It's something like this I want to get to,
yr.cat yrQ a b
1 "A" 2016-1 4.14 4.25
2 "A" 2016-2 2.83 3.50
3 "B" 2016-3 3.71 3.50
4 "B" 2016-4 4.15 3.50
5 "B" 2016-5 4.63 3.50
6 "C" 2016-6 4.91 3.50
7 "C" 2016-7 5.31 5.00
Aucun commentaire:
Enregistrer un commentaire