I struggle with nested ifelse. I want to create a new variable using dplyr::mutate based on values of other variables. See the reproductible example below.
library(dplyr)
library(hms)
# make a test dataframe
datetime <- as.POSIXct(c("2015-01-26 10:10:00 UTC","2015-01-26 10:20:00 UTC","2015-01-26 10:30:00 UTC", "2015-01-26 10:40:00 UTC","2015-01-26 10:50:00 UTC","2015-01-26 11:00:00 UTC","2015-01-26 00:10:00 UTC","2015-01-26 11:20:00 UTC","2015-01-26 11:30:00 UTC","2017-03-10 10:00:00 UTC"))
time <- hms::as_hms(datetime)
pco2_corr <- c(90,135,181,226,272,317,363,NA,454,300)
State_Zero <- c(NA,NA,1,rep(NA,7))
State_Flush <- c(rep(NA,4),1,rep(NA,5))
z <- tibble(datetime, time, pco2_corr, State_Zero, State_Flush)
# now create a new variable
z <- z %>%
dplyr::mutate(pco2_corr_qf = ifelse(is.na(pco2_corr), 15,
ifelse((State_Zero >= 1 | State_Flush >= 1), 4,
ifelse(pco2_corr < 100 | pco2_corr > 450, 7,
ifelse((time >= "00:00:00" & time <= "01:30:00") |
(time >= "12:00:00" & time <= "13:00:00"), 16,
ifelse((datetime >= "2017-03-10 08:00:00" &
datetime < "2017-03-21 20:00:00"), 99,
1))))))
z
# A tibble: 10 x 6
datetime time pco2_corr State_Zero State_Flush pco2_corr_qf
<dttm> <time> <dbl> <dbl> <dbl> <dbl>
1 2015-01-26 10:10:00 10:10 90 NA NA NA
2 2015-01-26 10:20:00 10:20 135 NA NA NA
3 2015-01-26 10:30:00 10:30 181 1 NA 4
4 2015-01-26 10:40:00 10:40 226 NA NA NA
5 2015-01-26 10:50:00 10:50 272 NA 1 4
6 2015-01-26 11:00:00 11:00 317 NA NA NA
7 2015-01-26 00:10:00 00:10 363 NA NA NA
8 2015-01-26 11:20:00 11:20 NA NA NA 15
9 2015-01-26 11:30:00 11:30 454 NA NA NA
10 2017-03-10 10:00:00 10:00 300 NA NA NA
The first two ifelse work fine but the next three do not. The new variable pco2_corr_qf should not have any NA but values 7, 16, 99 and 1.
What am I doing wrong?
Aucun commentaire:
Enregistrer un commentaire