I have following simple placeholders:
x = tf.placeholder(tf.float32, shape=[1])
y = tf.placeholder(tf.float32, shape=[1])
z = tf.placeholder(tf.float32, shape=[1])
There are two functions f1
and f2
defined as:
def fn1(a, b):
return tf.mul(a, b)
def fn2(a, b):
return tf.add(a, b)
Now I want to calculate result based on pred condition:
pred = tf.placeholder(tf.bool, shape=[1])
result = tf.cond(pred, f1(x,y), f2(y,z))
But it gives me an error saying fn1 and fn2 must be callable
.
How can I write fn1
and fn2
so that they can receive parameters at runtime? I want to call the following:
sess.run(result, feed_dict={x:1,y:2,z:3,pred:True})
Aucun commentaire:
Enregistrer un commentaire